
CALL FOR PAPER

Conference on Economic and Business Innovation

ANALISIS REGRESI FAKTOR YANG MEMPENGARUHI KEJAHATAN YANG DILAPORKAN DI INDONESIA SEBELUM PANDEMI COVID 19

Taufik Hidayadi¹, Sohibunajar², Fitriah Ulfah³

- ¹ Program Studi Akuntansi, Fakultas Sosial Humaniora, Universitas Nahdlatul Ulama Indonesia, email: taufik@unusia.ac.id
- ²Program Studi Akuntansi, Fakultas Sosial Humaniora, Universitas Nahdlatul Ulama Indonesia, email: sohibunajar@unusia.ac.id
- ³Program Studi Akuntansi, Fakultas Sosial Humaniora, Universitas Nahdlatul Ulama Indonesia, email: fitriahulfah26@gmail.com

Abstract

Indonesia is one of the countries with a high crime rate in the world and even the crime rate has increased by 38.45% in mid-2020, this is an interesting problem to research, especially before the Covid 19 pandemic. The purpose of this study is to determine the factors economic and social influences on the crime rate at the provincial level in Indonesia. The method used is a quantitative method using secondary data. The data used is ex post-facto and the type of data is cross sectional. The data used were 34 provinces in Indonesia in 2019 using factor regression analysis techniques. Before carrying out a factor regression analysis, first the exogenous variables must be factored so that the factors from these variables are formed, and only then regressed between the endogenous variables and the variables formed from the results of the factors of the exogenous variables. The results showed that the crime rate was influenced by the group of variables of PDRB, population density, IPM, and the dropout rate.

Keywords: crime rate, before the Covid 19 pandemic, factor regression analysis

PENDAHULUAN

Kriminalitas merupakan permasalahan besar yang dialami dan sulit dihindari di seluruh dunia, di negara maju, maupun negara berkembang. Indonesia salah satu negara dengan tingkatan kriminalitas yang tinggi di dunia dan bahkan angka kriminalitas naik 38,45% pada pertengahan 2020 lalu (Wijayaatmaja, 2020). Pada masa globalisasi pertumbuhan ilmu pengetahuan dan teknologi melaju dengan pesat sehingga memunculkan pesatnya persaingan. Globalisasi berakibat pada menjadi mudahnya seorang masuk, ke luar, dan ke dalam sesuatu wilayah tertentu sehingga berimplikasi pada masuk dan keluarnya budaya budaya asing ke dalam negara sendiri atau negara lain. Nilai-nilai baru yang masuk tersebut membawa perubahan terhadap sikap warga, tidak terkecuali nilai-nilai negatif yang kemudian menyebabkan keresahan dalam warga. Keinginan pemenuhan kebutuhan yang meningkat dari seorang bila tidak diiringi dengan keahlian yang baik sehingga mendorong seseorang untuk mendapatkannya dengan menghalalkan segala cara serta melaksanakan aksi kejahatan untuk memenuhi keinginannya (Purwanti dan Widyaningsih, 2019).

Berdasarkan informasi Badan Pusat Statistik Indonesia, jumlah tindak kriminal di Indonesia berfluktuasi namun cenderung bertambah. *Crime rate* adalah angka kejahatan atau risiko terkena kejahatan adalah jumlah kejahatan setahun dibagi dengan jumlah penduduk tahun yang bersangkutan dikalikan 100.000.

Dalam ilmu ekonomi kriminalitas, faktor-faktor keuangan merupakan menyebabkan individu terdorong melakukan tindakan kriminal agar mendapat keuntungan dengan mudah dan cepat dibandingkan dengan melakukan pekerjaan yang legal atau bekerja pada sektor formal tanpa memikirkan dan mempertimbangkan efek negatif yang ditimbulkan dari perilaku tersebut (Audey dan Ariusni, 2019).

Kondisi ekonomi dan sosial masyarakat Indonesia yang berfluktuatif serta cenderung mendapatkan pengaruh dari luar berupa budaya yang lebih mementingkan sikap hidup hedonis memaksa seseorang untuk melakukan tindakan jalan pintas untuk memenuhi keinginan egonya. Oleh karena itu, tujuan penelitian ini untuk mengetahui faktor-faktor ekonomi dan sosial yang berpengaruh pada tingkat kriminalitas di tingkat provinsi di Indonesia.

Penelitian ini diharapkan berkotribusi dalam memberikan informasi alternatif kepada instansi terkait untuk mengatasi masalah kriminalitas. Selanjutnya, hasil penelitian ini dapat menjadi bahan evaluasi dan pertimbangan dalam menentukan kebijakan sebagai upaya dalam perbaikan ekonomi dan sosial dari tingkat kriminalitas di Indonesia.

KAJIAN TEORI

Teori Kriminalitas

Kriminalitas berasal dari kata *crime* artinya kejahatan. Kejahatan bisa disebut kriminalitas karena menunjukkan suatu perbuatan atau tingkah laku kejahatan. Dalam kamus terjemahan bahwa *crime* adalah kejahatan dan *criminal* dapat diartikan jahat atau penjahat, maka kriminalitas dapat diartikan sebagai perbuatan kejahatan (Purwanti & Widyaningsih, 2019).

Teori Pendidikan

Peningkatan kualitas sumber daya manusia melalui investasi modal manusia (human invesment) merupakan gagasan lama. Istilah modal manusia (human capital) yang diperkenalkan oleh Gary S. Becker. Pada tahun 1950-an para ekonom mengasumsikan bahwa labour power adalah tetap (given) dan tidak dapat ditingkatkan. Dalam pembangunan ekonomi peran mutu modal sangat penting dalam peningkatan kapasitas produksi khususnya berkaitan dengan adanya mutu modal manusia yang tinggi. Mutu pendidikan dikatakan baik bila dengan satuan waktu yang sama, seorang penduduk dapat menghasilkan output lebih tinggi.

Teori Pengangguran

Pengangguran merupakan masalah makro ekonomi yang mempengaruhi manusia secara langsung dan paling besar. Kebanyakan orang kehilangan pekerjaan berarti penurunan standar kehidupan dan tekanan psikologis. Pengangguran terbuka tercipta sebagai akibat pertambahan lowongan pekerjaan yang lebih rendah dari pertambahan tenaga kerja. Efek dari keadaan ini dalam jangka waktu cukup panjang, mereka tidak melakukan sesuatu pekerjaan. Jadi, mereka menganggur secara nyata dan sepenuh waktu dinamakan pengangguran terbuka.

Teori Kemiskinan

Menurut Andre Bayo Ala (1981) kemiskinan itu bersifat multi dimensional artinya kebutuhan manusia itu bermacam-macam, maka kemiskinan pun memiliki banyak aspek. Dimensi-dimensi kemiskinan tersebut termanifestasikan dalam bentuk kekurangan gizi, air, kesehatan yang kurang baik, dan tingkat pendidikan yang rendah. Selanjutnya menurut Todaro (2006), kemiskinan absolut apabila sejumlah penduduk yang tidak mampu mendapatkan sumber daya yang cukup untuk memenuhi kebutuhan dasar (Rahmalia, Ariusni, M. Triani, 2019).

Indeks Pembangunan Manusia

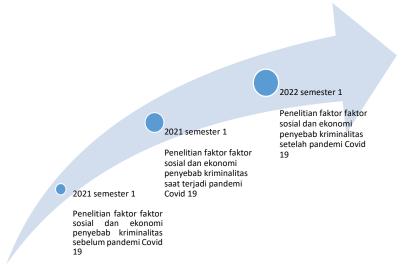
UNDP menjelaskan bahwa pembangunan manusia merupakan proses dalam memperluas pilihan-pilihan bagi penduduk. Semakin cepat pembangunan manusia maka pertumbuhan penduduk akan mencapai peningkatan produktivitas. Indeks pembangunan manusia digunakan untuk mengukur seberapa besar dampak yang ditimbulkan dari upaya peningkatan kemampuan modal dasar manusia. Pembangunan dihitung menggunakan ukuran besar kecilnya angka pendidikan, kesehatan, dan daya beli. Semakin tinggi angka yang diperoleh maka semakin tercapai tujuan dari pembangunan (Ariusni Ryan Pratama, 2019).

Pengaruh PDRB Perkapita Terhadap Kriminalitas

Hubungan antara pendapatan perkapita dan kriminalitas dalam konsep *benefit and cost* dikemukakan oleh Omotor (2014), menunjukkan bahwa peningkatan pendapatan perkapita memberikan hubungan negatif pada tindakan kriminalitas. Ekspektasi gaya hidup masyarakat dengan adanya peningkatan pendapatan perkapita akan meningkat, sehingga komitmen melakukan kejahatan akan menurun. Penurunan kesejahteraan menimbulkan banyak konflik yang mendorong orang melakukan kejahatan, artinya apabila PDRB perkapita menurun maka konflik

akan terjadi dan meningkatkan kasus kriminalitas (Purwanti & Widyaningsih, 2019).

Ketimpangan Ekonomi


Ketimpangan ekonomi atau ketimpangan distribusi pendapatan adalah tidak meratanya distribusi pendapatan di suatu negara. Salah satu metode yaitu dengan menggunakan gini *ratio*, koefisien gini berkisar antara 0 hingga 1. Todaro dan Smith (2016) mengkategorikan negara dengan ketimpangan ekonomi tinggi memiliki angka gini rasio antara 0,50 hingga 0,70. Sedangkan negara dengan distribusi pendapatan relatif merata bila angka gini rasionya antara 0,20 hingga 0,35 (Mardinsyah & Sukartini, 2020).

Kepadatan Penduduk

Kepadatan penduduk mempengaruhi kualitas hidup penduduknya. Usaha dalam meningkatkan kualitas hidup penduduk pada daerah dengan kepadatan penduduk tinggi akan lebih sulit dibanding meningkatkan kualitas hidup pada daerah dengan kepadatan penduduk rendah. Hal ini akan menimbulkan berbagai masalah sosial ekonomi, kesejahteraan dan keamanan. Semakin padatnya penduduk di suatu daerah akan semakin tinggi kemungkinan terjadinya tindak kriminal (Todotua, 2016) (Audey dan Ariusni, 2019)

Luaran Penelitian

Luaran wajib dalam penelitian ini adalah publikasi satu artikel ilmiah dalam jurnal nasional jika memungkinkan SINTA 3 dan ber-ISSN dengan tujuan Jurnal Ekonomi dan Studi Pembangunan.

Gambar 1. Road Map Penelitian Faktor Sosial Ekonomi dan Angka Kriminalitas

METODE PENELITIAN

Desain Penelitian

Metode yang digunakan adalah metode kuantitatif dimana dalam penelitian ini menggunakan data sekunder. Keseluruhan data sekunder yang digunakan dalam penelitian ini diperoleh dari situs Badan Pusat Statistik. Data yang digunakan

adalah *expost-facto* dimana data tersebut telah terjadi dimasa lalu dan jenis datanya adalah *cross sectional* dalam suatu waktu dengan beberapa individu. Data yang dipakai adalah data dari 34 provinsi di Indonesia pada tahun 2019.

Variabel Penelitian

Variabel independen dalam penelitian ini yaitu (1) tingkat kemiskinan (angka penduduk miskin tahun 2019), skala rasio berbentuk persentase; (2) tingkat PDRB (angka PDRB tahun 2019), skala nominal; (3) tingkat pengangguran (angka pengangguran terbuka tahun 2019), skala rasio berbentuk persentase; (4) tingkat kepadatan penduduk (angka kepadatan penduduk), skala rasio berbentuk persentase (5) tingkat ketimpangan ekonomi (angka gini *ratio* tahun 2019), skala rasio berbentuk persentase; (6) tingkat pendidikan (angka putus sekolah SMA tahun 2019), skala nominal; (7) tingkat pendidikan (angka putus sekolah SMP tahun 2019), skala nominal; dan (8) tingkat indeks pembangunan manusia (angka indeks IPM tahun 2019), skala rasio berbentuk persentase. Sedangkan variabel dependen dalam penelitian ini adalah tingkat kriminalitas (angka kriminalitas), skala rasio berbentuk persentase.

Hipotesis Penelitian

Hipotesis dalam penelitian ini adalah:

H₁: Penduduk miskin berpengaruh signifikan terhadap tingkat kejahatan

H₂: PDRB berpengaruh signifikan terhadap tingkat kejahatan

H₃: Tingkat pengangguran berpengaruh signifikan terhadap tingkat kejahatan

H₄: Kepadatan penduduk berpengaruh signifikan terhadap tingkat kejahatan

H₅: Gini *ratio* berpengaruh signifikan terhadap tingkat kejahatan

H₆: Putus sekolah SMA berpengaruh signifikan terhadap tingkat kejahatan

H₇: Putus sekolah SMP berpengaruh signifikan terhadap tingkat kejahatan

H₈: IPM berpengaruh signifikan terhadap tingkat kejahatan

Teknik Analisis Data

Penelitian ini dilakukan untuk mengetahui sejauhmana pengaruh persentase penduduk miskin menurut provinsi (X_1) , PDRB (X_2) , tingkat pengangguran terbuka (X_3) , tingkat kepadatan penduduk (X_4) , gini ratio (X_5) , putus sekolah SMA (X_6) , putus sekolah SMP (X_7) , dan IPM (X_8) terhadap kejahatan yang dilaporkan di propinsi (Y) maka dilakukan analisis regresi faktor.

Persamaan umum skor faktor dalam penelitian ini yaitu:

$$F_{i} = \gamma_{1}ZX_{1} + \gamma_{2}ZX_{2} + \ldots + \gamma_{i}ZX_{i} + \varepsilon_{i},$$

dimana γ merupakan koefesien/bobot atau parameter yang merefleksikan faktor komponen ke-j. Nilai γ dicerminkan dalam tabel *component score coefficient matrix*.

Kombinasi antara analisis faktor dan analisis regresi klasik disebut sebagai analisis regresi faktor yaitu meregresikan hasil dari analisis faktor sebagai variabel eksogen dengan variabel endogen (Y) (Paramartha, 2014). Persamaan analisis regresi klasik y = f (skor faktor) dimana y = f ($F_1, ..., F_i$)

dengan memasukkan nilai skor faktor Fj ke dalam persamaan penduga $y = \hat{\beta}o + \hat{\beta}_1 F_1 + \hat{\beta}_2 F_2 + ... + \hat{\beta}_i F_i + e_i$ dimana y adalah kejahatan yang dilaporkan maka

didapat persamaan Y dengan X_i standar, sehingga persamaan analisis regresi faktor yaitu:

$$\widehat{y} = \widehat{\beta}o + \widehat{\beta}_1 F_1 + \widehat{\beta}_2 F_2 + \dots + \widehat{\beta}_i F_i + e_i$$

HASIL DAN PEMBAHASAN

Analisis Faktor Eksploratori

Langkah pertama dalam analisis faktor adalah variabel eksogen difaktorkan dengan analisis faktor eksploratori. Dalam melakukan analisis faktor eksploratori diperlukan data perhitungan sebagai berikut:

1. Nilai Kaiser-Meyer-Olkin and Bartlett's Test (Uji Kelayakan Faktor)

Hasil nilai Kaiser-Meyer-Olkin *and* Bartlett's *test* (uji kelayakan faktor) disajikan pada tabel 1 berikut.

Tabel 1. Hasil Uji Kelayakan Faktor (KMO and Bartlett's Test)

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Mea	.586	
Bartlett's Test of	Approx. Chi-Square	143.774
Sphericity	df	28
	Sig.	.000

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Pada tabel 1, terlihat nilai KMO *and* Bartlett's *test* sebesar 0,586 lebih besar dari 0,5 menunjukkan semua variabel memenuhi kelayakan untuk difaktorkan. Nilai signifikansi sebesar 0,000 < 0,05 menunjukkan jumlah sampel sudah memenuhi kriteria untuk difaktorkan. Bartlett *Test* (*Chi-Square*: 143,774) terbukti secara statistik signifikan (0,000) artinya matriks korelasi bukan merupakan matriks identitas.

2. Anti-Image Correlation Test (Uji Pemilihan Dimensi Faktor)

Hasil nilai uji pemilihan dimensi faktor disajikan pada tabel 2 berikut.

Tabel 2. Hasil Uji Pemilihan Dimensi Faktor (Anti-Image Matrices Correlation)

Anti-image Matrices

		Pnddk_Miskin	PDRB	Tingkat_Peng angguran	Kepadatan_P ddk	GINIRatio	PutusSMA	PutusSMP	IPM
Anti-image Covariance	Pnddk_Miskin	.668	.058	.108	.011	222	061	.061	.016
	PDRB	.058	.373	126	241	.081	.019	010	132
	Tingkat_Pengangguran	.108	126	.690	.021	.125	029	.010	094
	Kepadatan_Pddk	.011	241	.021	.451	122	.004	010	074
	GINIRatio	222	.081	.125	122	.642	.019	032	189
	PutusSMA	061	.019	029	.004	.019	.053	052	.001
	PutusSMP	.061	010	.010	010	032	052	.054	.005
	IPM	.016	132	094	074	189	.001	.005	.622
Anti-image Correlation	Pnddk_Miskin	.525ª	.116	.160	.021	338	327	.322	.024
	PDRB	.116	.657ª	248	588	.166	.137	073	274
	Tingkat_Pengangguran	.160	248	.733 ^a	.038	.187	154	.052	143
	Kepadatan_Pddk	.021	588	.038	.667ª	228	.028	065	140
	GINIRatio	338	.166	.187	228	.520ª	.103	172	299
	PutusSMA	327	.137	154	.028	.103	.505ª	964	.005
	PutusSMP	.322	073	.052	065	172	964	.502ª	.026
	IPM	.024	274	143	140	299	.005	.026	.762ª

a. Measures of Sampling Adequacy(MSA)

Pada tabel 2, terlihat semua variabel mempunyai nilai anti image korelasi ≥ 0.5 artinya semua dimensi merupakan dimensi pembentuk faktor atau dimensi tersebut dapat membentuk faktor bersama. Oleh karena itu, semua dimensi berhak dijadikan komponen faktor bersama.

3. Communalities (Peranan Dimensi Terhadap Faktor)

Hasil nilai *communalities* (peranan dimensi terhadap faktor) disajikan pada tabel 3 berikut.

Tabel 3. Hasil Nilai Communalities

Communalities

	Initial	Extraction
Pnddk_Miskin	1.000	.623
PDRB	1.000	.801
Tingkat_Pengangguran	1.000	.621
Kepadatan_Pddk	1.000	.734
GINIRatio	1.000	.769
PutusSMA	1.000	.963
PutusSMP	1.000	.952
IPM	1.000	.661

Extraction Method: Principal Component Analysis

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Communalities dalam analisis faktor hampir sama dengan koefesien determinasi (R^2) dalam analisis regresi berganda. Walaupun terbentuk dua faktor bersama, namun dalam communalities faktor yang terbentuk merupakan satu kesatuan. Nilai communalities menunjukkan kemampuan variabel dalam menjelaskan faktor. Variabel yang mampu menjelaskan faktor jika nilai extraction > 0,5. Nilai extraction menunjukkan persentase peranan atau sumbangan masing-masing dimensi secara individual terhadap faktor yang terbentuk. Pada tabel 3, terlihat semua variabel nilai extraction > 0,5 dan peranan dimensi terhadap faktor terbesar adalah peranan variabel putus sekolah SMA (X_6) sebesar 0,963 atau 96,3% dan yang terkecil adalah variabel IPM (X_8) sebesar 0,661 atau 66,1%.

4. Total Variance Explained Test

Hasil nilai uji homogenitas disajikan pada tabel 4 berikut.

Tabel 4. Nilai Total Variance Explained

Total Variance Explained

		Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	2.477	30.957	30.957	2.477	30.957	30.957	2.330	29.131	29.131	
2	2.200	27.503	58.460	2.200	27.503	58.460	2.148	26.849	55.980	
3	1.447	18.084	76.544	1.447	18.084	76.544	1.645	20.564	76.544	
4	.633	7.917	84.461							
5	.546	6.830	91.291							
6	.427	5.334	96.625							
7	.243	3.037	99.662							
8	.027	.338	100.000							

Extraction Method: Principal Component Analysis.

Pada tabel 4, terlihat dari delapan dimensi atau variabel pengukuran terbentuk *Extraction Sums of Squared Loadings* yaitu tiga faktor bersama (nilai *Initial Eigenvalues* > 1), maka faktor bersama satu (F₁) dengan persentase varian sebesar 30,957%, faktor bersama dua (F₂) dengan persentase varian sebesar 27,5037%, dan faktor bersama tiga (F₃) 18,084% dengan persentase varian sebesar 100%. Komulatif persentase varian yang terbentuk dari tiga faktor bersama sebesar 76,544%, dan sisanya 23,456% terdiri dari lima faktor bersama lainnya.

5. Rotated Component Matrix Analysis

Rotated component matrix berfungsi untuk memastikan suatu variabel masuk dalam kelompok faktor mana. Hal ini dapat dilihat dari nilai korelasi antara variabel dengan faktor (component) yang terbesar rotasi menggunakan metode varimax. Komponen matrik dapat dilihat pada tabel 5 berikut.

Tabel 5. Nilai Rotated Component Matrix

	Component				
	1	2	3		
Pnddk_Miskin	202	.066	.760		
PDRB	.820	126	336		
Tingkat_Pengangguran	.350	.404	579		
Kepadatan_Pddk	.854	.060	024		
GINIRatio	.325	.253	.774		
PutusSMA	081	.973	.094		
PutusSMP	015	.974	.058		
IPM	.808	028	.083		

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Pada tabel 5, variabel dapat digolongkan menjadi 3 kelompok faktor yaitu: Kelompok Faktor 1: PDRB (X₂), kepadatan penduduk (X₄), IPM (X₈) Kelompok Faktor 2: Putus sekolah SMA (X₆), putus sekolah SMP (X₇)

Kelompok Faktor 3 : penduduk miskin (X_1) , tingkat pengangguran (X_3) , gini

ratio (X₅)

6. Component Score Coefficient Matrix

Persamaan skor faktor dapat dibentuk berdasarkan hasil *component score coefficient matrix* disajikan pada tabel 6 berikut.

Tabel 6. Nilai Component Score Matrix

Component Score Coefficient Matrix

	Component				
	1	2	3		
Pnddk_Miskin	019	012	.459		
PDRB	.334	053	128		
Tingkat_Pengangguran	.093	.219	359		
Kepadatan_Pddk	.375	.015	.062		
GINIRatio	.213	.067	.507		
PutusSMA	044	.455	007		
PutusSMP	018	.456	024		
IPM	.366	032	.131		

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Component Scores.

a. Rotation converged in 5 iterations.

Pada tabel 6, terlihat koefisien dari masing-masing faktor bersama yang terbentuk (F₁, F₂ dan F₃) sehingga persamaan skor faktor dari variabel yang mempengaruhi kejahatan yang dilaporkan sebagai berikut.

- Untuk skor faktor satu, $F_1 = -0.019ZX_1 0.334ZX_2 + 0.093ZX_3 + 0.375ZX_4 + 0.213ZX_5 0.044ZX_6 0.016ZX_7 0.366ZX_8$
- Untuk skor faktor dua, $F_2 = -0.012ZX_1 0.053ZX_2 + 0.219ZX_3 + 0.015ZX_4 + 0.067ZX_5 0.455ZX_6 0.456ZX_7 0.032ZX_8$
- Untuk skor faktor tiga, $F_3 = 0.459ZX_1 0.128ZX_2 0.359ZX_3 + 0.062ZX_4 + 0.507ZX_5 0.007ZX_6 0.024ZX_7 + 0.131ZX_8$

Analisis Regresi Faktor

Hasil dari analisis faktor yang terbentuk pada persamaan (F₁, F₂ dan F₃) diregresikan sebagai variabel eksogen dengan variabel endogen (Y) dimana data dapat dilihat pada tabel 7 berikut.

Tabel 7. Hasil Analisis Regresi Faktor

No	Kejahatan Dilaporkan di Propinsi (Y)	Faktor 1	Faktor 2	Faktor 3
1	7483	21662	.08141	05504
2	30831	20466	104.196	12185
3	11064	25506	27044	97054
4	6570	.52694	04529	97054
5	6848	15521	58575	.52398
6	12861	35467	.28825	.69032
7	3453	25153	63629	181.202
8	8534	44349	00648	.32491
9	1953	55583	85906	-124.414
10	3159	.79597	36674	-110.850
11	31934	468.390	15121	31712
12	13145	.30300	414.211	21235
13	10317	.00837	.86415	.74793
14	6650	101.646	78861	213.783
15	26985	05987	244.573	.44969
16	3287	.35694	.76560	-106.465
17	3047	.31851	-103.336	.54415
18	8185	45156	.03217	220.482
19	5865	-120.312	.67295	.26933
20	4721	70236	.23508	51965
21	2444	10361	44634	01976
22	5375	25574	49173	41180
23	4417	135.131	51360	-101.857
24	876	.00098	87114	-123.631
25	7425	.22499	32183	29244
26	6265	47995	69167	.44669
27	16008	.09108	.34012	.10142
28	1213	.06501	31039	100.670
29	2357	34681	60701	.23864
30	1863	36763	54519	189.654
31	3495	67019	20668	-123.467
32	718	74172	50229	98557
33	2972	47510	34477	-122.419
34	6994	-144.872	31365	-112.483

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Dengan memasukkan nilai skor faktor F_1 , F_2 , dan F_3 ke dalam persamaan penduga $y = \hat{\beta}o + \hat{\beta}_1F_1 + \hat{\beta}_2F_2 + \hat{\beta}_3F_3 + e_i$ maka persamaan regresi faktor:

 $\hat{y} = \hat{\beta}o + \hat{\beta}_{1}(0.019ZX_{1} - 0.334ZX_{2} + 0.093ZX_{3} + 0.375ZX_{4} + 0.213ZX_{5} - 0.044ZX_{6}$ $- 0.016ZX_{7} - 0.366ZX_{8}) + \hat{\beta}_{2}(-0.012ZX_{1} - 0.053ZX_{2} + 0.219ZX_{3} + 0.015ZX_{4}$ $+ 0.067ZX_{5} - 0.455ZX_{6} - 0.456ZX_{7} - 0.032ZX_{8}) + \hat{\beta}_{3}(0.459ZX_{1} - 0.128ZX_{2} - 0.359ZX_{3} + 0.062ZX_{4} + 0.507ZX_{5} - 0.007ZX_{6} - 0.024ZX_{7} + 0.131ZX_{8})$

Mencari Model yang Paling Baik dengan Melihat Adj-R², Uji-F, Uji-t, dan Uji Asumsi Klasik

Mencari nilai $\hat{\beta}o$, $\hat{\beta}_1$, $\hat{\beta}_2$, dan $\hat{\beta}_3$ dapat dilihat dalam tabel *coeficient* dengan menggunakan aplikasi SPSS 26, maka sebelum itu terlebih dahulu dicari pengaruh simultan dalam beberapa kali percobaan.

1. Percobaan Pertama

Memasukkan Faktor 1, Faktor 2, dan Faktor 3 sebagai variabel independen dan memasukkan variabel kejahatan yang dilaporkan di tiap propinsi sebagai variabel dependen disajikan pada tabel berikut.

Tabel 8. Hasil Uji R²

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.690ª	.476	.424	5984.561

 a. Predictors: (Constant), REGR factor score 3 for analysis 1, REGR factor score 2 for analysis 1, REGR factor score 1 for analysis 1

b. Dependent Variable: Kejahatan_Propinsi

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Pada tabel 8, terlihat nilai *adjusted* R² adalah 0,424 artinya variabilitas variabel dependen dapat dijelaskan oleh variabel independen sebesar 42,4%, dan sisanya sebesar 57,6% dijelaskan oleh faktor lainnya diluar model. Hasil uji-F disajikan pada tabel 9 berikut.

Tabel 9. Hasil Uji-F

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	977232177.3	3	325744059.1	9.095	.000b
	Residual	1074449115	30	35814970.49		
	Total	2051681292	33			

a. Dependent Variable: Kejahatan_Propinsi

b. Predictors: (Constant), REGR factor score 3 for analysis 2, REGR factor score 2 for analysis 2, REGR factor score 1 for analysis 2

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Pada tabel 9, hasil nilai F hitung sebesar 9,095 dengan signifikansi 0,000 menunjukkan kelompok Faktor 1, Faktor 2, Faktor 3 secara bersama-sama (signifikan) terhadap tingkat kejahatan yang dilaporkan pada tiap propinsi. Hasil nilai F tabel = $F_{(0,05, 30, 3)} = 8,62$, sehingga F hitung > F tabel maka H_0 dari uji F adalah model tidak signifikan sedangkan H_1 adalah model signifikan. Hasil uji-t (parsial) disajikan pada tabel 10 berikut.

Tabel 10. Hasil Uji-t (Parsial)

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	7921.000	1026.344		7.718	.000		
	REGR factor score 1 for analysis 1	3616.539	1041.778	.459	3.472	.002	1.000	1.000
	REGR factor score 2 for analysis 1	4026.048	1041.778	.511	3.865	.001	1.000	1.000
	REGR factor score 3 for analysis 1	569.806	1041.778	.072	.547	.588	1.000	1.000

a. Dependent Variable: Kejahatan_Propinsi

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Berdasarkan tabel 10, terdapat tiga hipotesis karena ada 3 variabel independen:

- 1. $H_0: \hat{\beta}_1 = 0 \text{ dan } H_1: \hat{\beta}_1 \neq 0$ Hasil uji t menunjukkan Faktor 1 memiliki nilai signifikansi 0,002 dimana lebih kecil dari 0,05 maka tolak H₀ artinya Faktor 1 terdapat pengaruh signifikan terhadap kejahatan yang dilaporkan.
- 2 $H_0: \hat{\beta}_2 = 0 \text{ dan } H_1: \hat{\beta}_2 \neq 0$ Hasil uji t menunjukkan Faktor 2 memiliki nilai signifikansi 0,001 dimana lebih kecil dari 0,05 maka tolak H₀ artinya Faktor 2 terdapat pengaruh signifikan terhadap kejahatan yang dilaporkan.
- 3. $H_0: \hat{\beta}_3 = 0 \text{ dan } H_1: \hat{\beta}_3 \neq 0$ Hasil uji t menunjukkan Faktor 3 memiliki nilai signifikansi 0,547 dimana lebih besar dari 0,05 maka terima H₀ artinya Faktor 3 tidak terdapat pengaruh signifikan terhadap kejahatan yang dilaporkan.

Uji asumsi klasik dilakukan sebagai syarat dalam menggunakan model regresi. Uji normalitas dilakukan untuk menguji apakah suatu model regresi memiliki distribusi normal atau tidak disajikan pada tabel 11 berikut.

Tabel 11. Uji Normalitas

One-Sample Kolmogorov-Smirnov Test

		ABSREs
N		34
Normal Parameters ^{a,b}	Mean	3954.0953
	Std. Deviation	4055.91056
Most Extreme Differences	Absolute	.182
	Positive	.182
	Negative	168
Kolmogorov-Smirnov Z		1.063
Asymp. Sig. (2-tailed)		.209

a. Test distribution is Normal b. Calculated from data

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Pada tabel 11, hasil uji normalitas dengan One-Sample Kolmogorov-Smirnov diperoleh nilai signifikasi sebesar 1,063 lebih besar dari 0,05 menunjukkan data penelitian secara residual berdistribusi normal. Uji multikolinearitas dilakukan untuk mengetahui ada tidaknya korelasi antar variabel independen dalam suatu model disajikan pada tabel 12 berikut.

Tabel 12. Hasil Uji Multikolenearitas

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	7921.000	1026.344		7.718	.000		
	REGR factor score 1 for analysis 1	3616.539	1041.778	.459	3.472	.002	1.000	1.000
	REGR factor score 2 for analysis 1	4026.048	1041.778	.511	3.865	.001	1.000	1.000
	REGR factor score 3 for analysis 1	569.806	1041.778	.072	.547	.588	1.000	1.000

a. Dependent Variable: Kejahatan_Propinsi

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Pada tabel 12, terlihat nilai VIF semua variabel kelompok Faktor kurang dari 10 dan nilai *collinearity tolerance* > 0,1 artinya tidak ada data yang multikolinearitas. Uji autokorelasi tidak perlu dilakukan karena data berbentuk *cross section*. Selanjutnya, uji heteroskedatisitas disajikan pada tabel 13 berikut.

Tabel 13. Hasil Uji Glestjer

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	3954.095	560.974		7.049	.000		
	REGR factor score 1 for analysis 1	1082.582	569.411	.267	1.901	.067	1.000	1.000
	REGR factor score 2 for analysis 1	2326.106	569.411	.574	4.085	.000	1.000	1.000
	REGR factor score 3 for analysis 1	-375.240	569.411	093	659	.515	1.000	1.000

a. Dependent Variable: ABSREs

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Pada tabel 13, hasil uji glejser terlihat Faktor 2 nilai signifikansi 0,000 lebih kecil dari 0,05 artinya terjadi heteroskedastisitas.

2. Percobaan Kedua

Memasukkan Faktor 1 dan Faktor 3 sebagai variabel independen serta memasukkan variabel kejahatan yang dilaporkan di tiap propinsi sebagai variabel dependen maka dapat dilihat pada tabel berikut.

Tabel 14. Hasil Uji R²

Model Summaryb

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.464ª	.216	.165	7205.169

a. Predictors: (Constant), REGR factor score 3 for analysis

1, REGR factor score 1 for analysis 1

b. Dependent Variable: Kejahatan_Propinsi

Pada tabel 14, terlihat nilai *adjusted* R² adalah 0,165 artinya variabilitas variabel dependen dapat dijelaskan oleh variabel independen sebesar 16,5%, dan sisanya sebesar 83,5% dijelaskan oleh faktor lainnya di luar model. Hasil uji-F disajikan pada tabel 15 berikut.

Tabel 15. Hasil Uji-F

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	442333105.1	2	221166552.6	4.260	.023 ^b
	Residual	1609348187	31	51914457.64		
	Total	2051681292	33			

a. Dependent Variable: Kejahatan_Propinsi

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Pada tabel 15, hasil nilai F hitung sebesar 4,260 dengan signifikansi 0,023 menunjukkan kelompok Faktor 1 dan Faktor 3 secara bersama-sama (signifikan) terhadap tingkat kejahatan yang dilaporkan pada tiap propinsi. Hasil nilai F tabel = $F_{(0,05, 31, 2)} = 19,5$, sehingga F hitung > F tabel maka H_0 dari uji F adalah model tidak signifikan sedangkan H_1 adalah model signifikan. Hasil uji-t (parsial) disajikan pada tabel 16 berikut.

Tabel 16. Hasil Uji-t (Parsial)

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	7921.000	1235.676		6.410	.000		
	REGR factor score 1 for analysis 1	3616.539	1254.259	.459	2.883	.007	1.000	1.000
	REGR factor score 3 for analysis 1	569.806	1254.259	.072	.454	.653	1.000	1.000

a. Dependent Variable: Kejahatan_Propinsi

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Berdasarkan tabel 16, terdapat dua hipotesis karena ada 2 variabel independen:

- 1. $H_0: \hat{\beta}_1 = 0$ dan $H_1: \hat{\beta}_1 \neq 0$ Hasil uji t menunjukkan Faktor 1 memiliki nilai signifikansi 0,007 dimana lebih kecil dari 0,05 maka tolak H_0 artinya Faktor 1 terdapat pengaruh signifikan terhadap kejahatan yang dilaporkan.
- H₀: β̂₃ = 0 dan H₁: β̂₃ ≠ 0
 Hasil uji t menunjukkan Faktor 3 memiliki nilai signifikansi 0,653 dimana lebih besar dari 0,05 maka terima H₀ artinya Faktor 3 tidak terdapat pengaruh signifikan terhadap kejahatan yang dilaporkan.
 Dengan demikian, percobaan kedua tidak perlu dilanjutkan.

b. Predictors: (Constant), REGR factor score 3 for analysis 1, REGR factor score 1 for analysis 1

3. Percobaan Ketiga

Memasukkan Faktor 1 dan Faktor 2 sebagai variabel independen serta memasukkan variabel kejahatan yang dilaporkan di tiap provinsi sebagai variabel dependen maka dapat dilihat pada tabel berikut.

Tabel 17. Hasil Uji R²
Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.686ª	.471	.437	5916.526

a. Predictors: (Constant), REGR factor score 2 for analysis

1, REGR factor score 1 for analysis 1

b. Dependent Variable: Kejahatan_Propinsi

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Pada tabel 17, terlihat nilai *adjusted* R² adalah 0,437 artinya variabilitas variabel dependen dapat dijelaskan oleh variabel independen sebesar 16,5%, dan sisanya sebesar 83,5% dijelaskan oleh faktor lainnya di luar model. Hasil uji-F disajikan pada tabel 18 berikut.

Tabel 18. Hasil Uji-F

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	966517787.9	2	483258894.0	13.805	.000b
	Residual	1085163504	31	35005274.32		
	Total	2051681292	33			

a. Dependent Variable: Kejahatan_Propinsi

b. Predictors: (Constant), REGR factor score 2 for analysis 1, REGR factor score 1 for analysis 1

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Pada tabel 18, hasil nilai F hitung sebesar 13,805, dengan signifikansi 0,000 menunjukkan kelompok Faktor 1 dan Faktor 2 secara bersama-sama (signifikan) terhadap tingkat kejahatan yang dilaporkan pada tiap propinsi. Hasil nilai F tabel = $F_{(0,05,\,31,\,2)}$ = 19,5, sehingga F hitung > F tabel maka H_0 dari uji F adalah model tidak signifikan sedangkan H_1 adalah model signifikan. Hasil uji-t (parsial) disajikan pada tabel 19 berikut.

Tabel 19. Hasil Uji-t (Parsial)

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	7921.000	1014.676		7.806	.000		
	REGR factor score 1 for analysis 1	3616.539	1029.935	.459	3.511	.001	1.000	1.000
	REGR factor score 2 for analysis 1	4026.048	1029.935	.511	3.909	.000	1.000	1.000

a. Dependent Variable: Kejahatan Propinsi

Berdasarkan tabel 19, terdapat dua hipotesis karena ada 2 variabel independen:

- 1. $H_0: \hat{\beta}_1 = 0$ dan $H_1: \hat{\beta}_1 \neq 0$ Hasil uji t menunjukkan Faktor 1 memiliki nilai signifikansi 0,001 dimana lebih kecil dari 0,05 maka tolak H_0 artinya Faktor 1 terdapat pengaruh signifikan terhadap kejahatan yang dilaporkan.
- 2. $H_0: \hat{\beta}_2 = 0 \text{ dan } H_1: \hat{\beta}_2 \neq 0$ Hasil uji t menunjukkan Faktor 2 memiliki nilai signifikansi 0,000 dimana lebih besar dari 0,05 maka tolak H_0 artinya Faktor 2 terdapat pengaruh signifikan terhadap kejahatan yang dilaporkan.

Uji normalitas dilakukan menggunakan *One Sample Kolmogorov-Smirnov* disajikan pada tabel 20 berikut.

Tabel 20. Uji Normalitas

One-Sample Kolmogorov-Smirnov Test

		ABSREsss
N		34
Normal Parameters ^{a,b}	Mean	3991.1195
	Std. Deviation	4058.57232
Most Extreme Differences	Absolute	.191
	Positive	.191
	Negative	164
Kolmogorov-Smirnov Z		1.115
Asymp. Sig. (2-tailed)		.166

a. Test distribution is Normal.

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Pada tabel 20, hasil uji normalitas diperoleh nilai signifikasi sebesar 1,115 lebih besar dari 0,05 menunjukkan data penelitian secara residual berdistribusi normal. Uji multikolinearitas disajikan pada tabel 21 berikut.

Tabel 21. Hasil Uji Multikolenearitas

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	7921.000	1014.676		7.806	.000		
	REGR factor score 1 for analysis 1	3616.539	1029.935	.459	3.511	.001	1.000	1.000
	REGR factor score 2 for analysis 1	4026.048	1029.935	.511	3.909	.000	1.000	1.000

a. Dependent Variable: Kejahatan_Propinsi

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Pada tabel 21, terlihat nilai VIF variabel kelompok Faktor 1 dan Faktor 2 kurang dari 10 dan nilai *collinearity tolerance* > 0,1 artinya tidak ada data yang multikolinearitas. Uji autokorelasi tidak perlu dilakukan karena data berbentuk *cross section*. Hasil uji heteroskedatisitas disajikanpada tabel 22 berikut.

b. Calculated from data.

Tabel 22. Hasil Uji Glestjer

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	3991.120	549.694		7.261	.000		
	REGR factor score 1 for analysis 1	1047.369	557.960	.258	1.877	.070	1.000	1.000
	REGR factor score 2 for analysis 1	2392.512	557.960	.589	4.288	.000	1.000	1.000

a. Dependent Variable: ABSREsss

Sumber: SPSS 26, 2021 (diolah oleh penulis)

Berdasarkan hasil uji glejser pada tabel 22, terlihat nilai signifikansi Faktor 2 lebih kecil dari 0,05 artinya terjadi heteroskedastisitas.

SIMPULAN

Berdasarkan percobaan pertama sampai dengan ketiga dimana *Godness of Fit* yang paling bagus walaupun sama-sama mengalami heterokedastisitas dan percobaan ketiga hanya terdapat dua variabel independen yaitu Faktor 1 dan Faktor 2, maka dipilih untuk hasil regresi faktor menggunakan hasil percobaan ketiga.

Persamaan Analisis Regresi Faktor yaitu:

```
\widehat{y} = 3991,12 + 1047,37(0,019ZX_{1} - 0,334ZX_{2} + 0,093ZX_{3} + 0,375ZX_{4} + 0,213ZX_{5} - 0,044ZX_{6} - 0,016ZX_{7} - 0,366ZX_{8}) + 2392,51(-0,012ZX_{1} - 0,053X_{2} + 0,219ZX_{3} + 0,015ZX_{4} + 0,067ZX_{5} - 0,455ZX_{6} - 0,456ZX_{7} - 0,032ZX_{8})
```

dimana:

Faktor 1 terdiri dari variabel PDRB (X₂), kepadatan penduduk (X₄), IPM (X₈) Faktor 2 terdiri dari variabel putus sekolah SMA (X₆), putus sekolah SMP (X₇) Variabel PDRB, putus sekolah SMA, putus sekolah SMP, IPM mempunyai arah yang negatif terhadap tingkat kejahatan yang dilaporkan dan sebaliknya variabel kepadatan penduduk mempunyai arah positif terhadap kejahatan yang dilaporkan.

Dengan demikian, dapat disimpulkan bahwa tingginya angka kriminalitas lebih dipengaruhi oleh rendahnya tingkat kesejahteraan dan rendahnya tingkat pendidikan daripada kemiskinan dan pengangguran. Penelitian ini masih perlu tindak lanjut dengan diulang pada waktu yang berbeda, untuk memastikan kesesuaian dengan teori atau memungkinkan adanya novelty.

REFERENSI

- Ariusni Ryan Pratama, A. (2019). PENGARUH KUALITAS SUMBER DAYA MANUSIA TERHADAP TINGKAT KRIMINALITAS DI INDONESIA. *Jurnal Kajian Ekonomi Dan Pembangunan, Volume 1 N*(Universitas Negeri Padang). http://ejournal.unp.ac.id/students/index.php/epb/article/view/6293
- Mardinsyah, A. A., & Sukartini, N. M. (2020). Ketimpangan Ekonomi, Kemiskinan dan Akses Informasi: Bagaimana Pengaruhnya Terhadap Kriminalitas? *Ekonika: Jurnal Ekonomi Universitas Kadiri*, 5(1), 19. https://doi.org/10.30737/ekonika.v5i1.554
- Paramartha, G. Y. (2014). *ANALISIS REGRESI FAKTOR*. https://www.academia.edu/11955382/Analisa_Regresi_Faktor
- Purwanti, E. Y., & Widyaningsih, E. (2019). Analisis Faktor Ekonomi Yang Mempengaruhi Kriminalitas Di Jawa Timur. *Jurnal Ekonomi-QU*, 9(2), 154–177.
- Suci Rahmalia, Ariusni, M. T. (2019). PENGARUH TINGKAT PENDIDIKAN, PENGANGGURAN, DAN KEMISKIAN TERHADAP KRIMINALITAS DI INDONESIA. *Jurnal Kajian Ekonomi Dan Pembangunan*, 1 n1(Jurusan Ilmu Ekonomi Fakultas Ekonomi Universitas Negeri Padang).
- Wijayaatmaja, Y. P. (2020). *Angka Kriminalitas Naik 38,45%*. Mediaindonesia.Com. https://mediaindonesia.com/megapolitan/321027/polrisebut-angka-kriminalitas-naik-3845