Aplikasi Smart Clustering Pada Klasifikasi Buah Naga Menggunakan Metode Convolutional Neural Network di Kabupaten Banyuwangi
DOI:
https://doi.org/10.31328/jasee.v4i02.433Keywords:
Dragon Fruit, CNN, Smart ClusteringAbstract
This article discusses the application of smart clustering in the classification of dragon fruit in Banyuwangi Regency. Banyuwangi is the largest production center in Indonesia. However, some farmers experience problems in producing quality fresh fruit that meets market demand. Therefore, a convolutional neural network method is proposed for the dragon fruit classification system to differentiate rotten and fresh fruit. The dragon fruit sample uses 50 fruits which will be trained based on digital images. The results of applying smart clustering show that the best fruit search value achieved an epoch accuracy of 99.24% with 100 iterations. Meanwhile, iterations 50 and 70 get epoch accuracy of 98.88% respectively. The results of fruit classification are used as initial data in determining good (fresh) and bad (rotten) fruit quality. So, dragon fruit farmers can harvest earlier before the disease spreads to other fruit.
References
Menteri Pendayagunaan Aparatur Negara dan Reformasi Birokrasi (PANRB), “Inovasi Puting Si Naga, Kembangbiakkan Buah Naga Bak Cinderella,” www.menpan.go.id, 2022. https://www.menpan.go.id/site/berita-terkini/inovasi-puting-si-naga-kembangbiakkan-buah-naga-bak-cinderella
M. Khoiri, “Data Potensi Pertanian Tahun 2017-2021,” Banyuwangi, 2018. [Online]. Available: https://dinaspertanian.banyuwangikab.go.id/page/view/data-tahunan-tanaman-pangan
A. D. M. Pupsitasari, “Analisis Usahatani Buah Naga Di Desa Sambirejo Kecamatan Bangorejo Kabupaten Banyuwangi,” 2015.
A. S. Lestari and E. B. Santoso, “Identifikasi Aliran Nilai Tambah Komoditas Unggulan Buah Naga di Kabupaten Banyuwangi,” vol. 7, no. 2, p. 6, 2018, [Online]. Available: https://media.neliti.com/media/publications/507337-none-b9fb7ec6.pdf
A. Mulyadi, A. P. Putra, and M. G. Wardana, “Penerapan Panel Surya Pada Lahan Buah Naga di Desa Wringinpitu, Kecamatan Tegaldlimo, Kabupaten Banyuwangi,” Jati Emas (Jurnal Apl. Tek. dan Pengabdi. Masyarakat), vol. 6, no. 3, pp. 93–96, 2022.
T. Erwandi, Kabupaten Banyuwangi Dalam Angka 2022, 1st ed. Banyuwangi: BPS Kabupaten Banyuwangi, 2022.
K. P. Prapti, R. Iskandar, and Kasutjianingati, “Strategi Peningkatan Kinerja Supply Chain Buah Naga di Kecamatan Bangorejo Kabupaten Banyuwangi Berdasarkan Proses Inti Scor,” J. Ilm. Inov., vol. 16, no. 1994, pp. 1–37, 2015, [Online]. Available: http://eprints.ums.ac.id/37501/6/BAB II.pdf
A. N. Isnanda, H. M. Ani, and B. Suyadi, “Pengaruh Biaya Usahatani Buah Naga Terhadap Keuntungan Para Petani Buah Naga Di Desa Temurejo Kecamatan Bangorejo Kabupaten Banyuwangi,” J. Ilm. Ilmu Pendidikan, Ilmu Ekon. dan Ilmu Sos., vol. 11, no. 1, p. 22, 2017, doi: 10.19184/jpe.v11i1.4993.
N. L. P. Indriyani and N. Hardiyanto, “Pengaruh Teknik Penyerbukan Terhadap Pembentukan Buah Naga (Hylocereus polyrizhus) [The Effect of Pollination Technique to Fruit Development of Dragon Fruit (Hylocereus polyrizhus)],” J. Hortik., vol. 28, no. 2, p. 183, 2019, doi: 10.21082/jhort.v28n2.2018.p183-190.
A. P. Putra and A. Mulyadi, “Design an Automatic Transfer Switch for Solar Power Plant,” Log. J. Ranc. Bangun dan Teknol., vol. 22, no. 1, pp. 9–12, 2022, doi: 10.31940/logic.v22i1.9-12.
M. A. Prasetyo and H. K. Wardana, “Rancang Bangun Monitoring Solar Tracking System Menggunakan Arduino dan Nodemcu Esp 8266 Berbasis IoT,” Resist. (Elektronika Kendali Telekomun. Tenaga List. Komputer), vol. 4, no. 2, p. 163, 2021, doi: 10.24853/resistor.4.2.163-168.
N. G. Hariri, M. A. Almutawa, I. S. Osman, I. K. Almadani, A. M. Almahdi, and S. Ali, “Experimental Investigation of Azimuth- and Sensor-Based Control Strategies for a PV Solar Tracking Application,” Appl. Sci., vol. 12, no. 9, 2022, doi: 10.3390/app12094758.
D. Pernandi and B. Santoso, “Otomatisasi Penyiram Tanaman Buah Naga Berbasis Iot Menggunakan Energy Panel Surya (Studi Kasus: Suga Flora),” OKTAL J. Ilmu Komput. dan Sci., vol. 2, no. 2, pp. 489–495, 2023.
C. Fathul Hadi, “Prototype Sistem Control Berbasis Internet of Things Pada Penyinaran Kebun Buah Naga,” CIRCUIT J. Ilm. Pendidik. Tek. Elektro, vol. 4, no. 1, p. 56, 2020, doi: 10.22373/crc.v4i1.6371.
C. Fathul Hadi, “Sistem Kendali Berbasis Android pada Penyinaran Kebun Buah Naga,” J. Bisnis dan Teknol. Politek. NSC Surabaya, vol. 2, no. 2, pp. 1–4, 2015.
M. F. Pratama, “Sistem Monitoring Dan Kontrol Daya Plts Menggunakan Iot Berbasis Fuzzy Logic,” Universitas Islam Sultan Agung Semarang, 2021. [Online]. Available: http://repository.unissula.ac.id/22976/12/Magister Teknik Elektro_20601700007_fullpdf.pdf
M. F. Ma’ruf, W. Windriyanti, and W. Widayati, “Keanekaragaman Serangga Penyerbuk Pada Tanaman Buah Naga (Hylocereus sp.) di Gudo Jombang,” J. AGROHITA, vol. 6, no. 2, pp. 324–330, 2021.
A. Saxena, “An Introduction to Convolutional Neural Networks,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 12, pp. 943–947, 2022, doi: 10.22214/ijraset.2022.47789.
M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Computation, vol. 11, no. 3, 2023, doi: 10.3390/computation11030052.
D. P. K. Banyuwangi, “Data Tahunan Tanaman Pangan,” 2023.
Rismiyati and A. Luthfiarta, “VGG16 Transfer Learning Architecture for Salak Fruit Quality Classification,” Telematika, vol. 18, no. 1, p. 37, 2021, doi: 10.31315/telematika.v18i1.4025.
D. M. Asriny and R. Jayadi, “Transfer Learning VGG16 for Classification Orange Fruit Images,” J. Syst. Manag. Sci., vol. 13, no. 1, pp. 206–217, 2023, doi: 10.33168/JSMS.2023.0112.
M. Ferguson, R. Ak, Y. T. T. Lee, and K. H. Law, “Automatic localization of casting defects with convolutional neural networks,” Proc. - 2017 IEEE Int. Conf. Big Data, Big Data 2017, no. December, pp. 1726–1735, 2017, doi: 10.1109/BigData.2017.8258115.
S. Wu, “Expression Recognition Method Using Improved VGG16 Network Model in Robot Interaction,” J. Robot., vol. 2021, 2021, doi: 10.1155/2021/9326695.
X. Zhu, D. Shen, R. Wang, Y. Zheng, S. Su, and F. Chen, “Maturity Grading and Identification of Camellia oleifera Fruit Based on Unsupervised Image Clustering,” Foods, vol. 11, no. 23, pp. 1–18, 2022, doi: 10.3390/foods11233800.
J. Wu, Introduction to Convolutional Neural Networks. 2017. [Online]. Available: https://web.archive.org/web/20180928011532/https://cs.nju.edu.cn/wujx/teaching/15_CNN.pdf
A. Ghosh, A. Sufian, F. Sultana, A. Chakrabarti, and D. De, Fundamental Concepts of Convolutional Neural Network, vol. 172, no. January. 2019. doi: 10.1007/978-3-030-32644-9_36.
D. L. Z. Astuti and Samsuryadi, “Kajian Pengenalan Ekspresi Wajah menggunakan Metode PCA dan CNN,” Annu. Res. Semin. Fak. Ilmu Komput., vol. 4, no. 1, pp. 293–297, 2018.
J. Chen, C. Zhong, J. Chen, Y. Han, J. Zhou, and L. Wang, “K-Means Clustering and Bidirectional Long- and Short-Term Neural Networks for Predicting Performance Degradation Trends of Built-In Relays in Meters,” Sensors, vol. 22, no. 21, 2022, doi: 10.3390/s22218149.
M. Wasil, Harianto, and Fathurrahman, “Pengaruh Epoch pada Akurasi menggunakan Convolutional Neural Network untuk Klasifikasi fashion dan Furniture,” Infotek J. Inform. dan Teknol., vol. 5, no. 1, pp. 53–61, 2022.
S. Pranata and D. Alamsyah, “Segmentasi Buah Mangga Menggunakan MLE dan GMM Sebagai Klasterisasi Pixel,” J. Algoritm., vol. 1, no. 1, pp. 57–67, 2020, doi: 10.35957/algoritme.v1i1.435.
J. Halim and A. N. Fajar, “Klasifikasi Pisang Berbasis Algoritma VGG16 Melalui Metode CNN Deep Learning,” Inf. (Jurnal Inform. dan Sist. Informasi), vol. 15, no. 1, pp. 1–17, 2023, doi: 10.37424/informasi.v15i1.190.
F. Masykur, M. B. Setyawan, and K. Winangun, “Epoch Optimization on Rice Leaf Image Classification Using Convolutional Neural Network (CNN) MobileNet,” CESS (Journal Comput. Eng. Syst. Sci., vol. 7, no. 2, p. 581, 2022, doi: 10.24114/cess.v7i2.37336.
I. G. T. Isa and B. Junedi, “Hyperparameter Tuning Epoch dalam Meningkatkan Akurasi Data Latih dan Data Validasi pada Citra Pengendara,” Pros. Sains Nas. dan Teknol., vol. 12, no. 1, p. 231, 2022, doi: 10.36499/psnst.v12i1.6697.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 JASEE Journal of Application and Science on Electrical Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.